首页> 外文OA文献 >RNAG: a new Gibbs sampler for predicting RNA secondary structure for unaligned sequences
【2h】

RNAG: a new Gibbs sampler for predicting RNA secondary structure for unaligned sequences

机译:RNAG:一种新的Gibbs采样器,用于预测未比对序列的RNA二级结构

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Motivation: RNA secondary structure plays an important role in the function of many RNAs, and structural features are often key to their interaction with other cellular components. Thus, there has been considerable interest in the prediction of secondary structures for RNA families. In this article, we present a new global structural alignment algorithm, RNAG, to predict consensus secondary structures for unaligned sequences. It uses a blocked Gibbs sampling algorithm, which has a theoretical advantage in convergence time. This algorithm iteratively samples from the conditional probability distributions P(Structure | Alignment) and P(Alignment | Structure). Not surprisingly, there is considerable uncertainly in the high-dimensional space of this difficult problem, which has so far received limited attention in this field. We show how the samples drawn from this algorithm can be used to more fully characterize the posterior space and to assess the uncertainty of predictions.
机译:动机:RNA二级结构在许多RNA的功能中起重要作用,并且结构特征通常是它们与其他细胞成分相互作用的关键。因此,对于RNA家族的二级结构的预测已经引起了极大的兴趣。在本文中,我们提出了一种新的全局结构比对算法RNAG,用于预测未比对序列的共有二级结构。它使用阻塞的吉布斯采样算法,该算法在收敛时间上具有理论优势。该算法从条件概率分布P(结构|对齐)和P(对齐|结构)中迭代采样。毫不奇怪,这个难题的高维空间存在很大的不确定性,到目前为止,在这一领域中受到的关注有限。我们展示了如何从该算法中提取样本,以更充分地表征后部空间并评估预测的不确定性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号